A conceptual multi-criteria pattern of sustainable urban development in sprawled cities: Case study Berlin as a sprawling city in Germany

## Schriftenreihe Bau- und Immobilienmanagement herausgegeben von Bernd Nentwig

Band 29

Die vorliegende Arbeit entstand im Rahmen einer Dissertation an der Bauhaus-Universität Weimar, Fakultät Architektur und Urbanistik. Reza Sheikhbakloo

# A conceptual multi-criteria pattern of sustainable urban development in sprawled cities:

Case study Berlin as a sprawling city in Germany

BAUHAUS UNIVERSITÄTSVERLAG Band 29 der Schriftenreihe Bau-und Immobilienmanagement, herausgegeben von Bernd Nentwig

Kein Teil dieses Werkes darf ohne schriftliche Einwilligung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder ein anderes Verfahren) reproduziert oder unter Verwendung elektronischer Systeme digitalisiert, verarbeitet, vervielfältigt oder verbreitet werden. Die Angaben zum Text und Abbildungen wurden mit großer Sorgfalt zusammengestellt und überprüft. Dennoch sind Fehler und Irrtümer nicht auszuschließen, für die Verlag, Autor und Herausgeber keine Haftung übernehmen.

Satz und Gestaltung: Antonia Herten M. Sc. Gedruckt in der Bundesrepublik Deutschland ISBN: 978-3-95773-254-5

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind über http://d-nb.de abrufbar.

© Bauhaus-Universitätsverlag im Jonas Verlag für Kunst und Literatur GmbH, Weimar 2017

## Foreword

Ecological Criteria can be seen as a main driver for re ection urban developments, in this case Berlin as a sprawling city in Germany.

In this work the author touches all relevant ecological indicators with statistical methods, which leads to a cumulative gain of knowledge.

Reza Sheikhbakloo's publication o ers a comprehensive, strategic approach dealing with statistical data in ecological orientated urban development.

Weimar, December 2017

Prof. Dr.-Ing. Bernd Nentwig

#### Acknowledgement

I would like to state my appreciation to my thesis advisors Prof. Dr.-Ing. Bernd Nentwig and Prof. Dr. Gerhard O. Braun for suggestions and useful comments on this research. Phrases disable me to state my thanks to my wife Dr. M. Sepahi, whose enthusiasm, love and continual con dence in me, has removed the yield o my shoulder. I would like to appreciate her and my Parents for screening me the beauty and opposite side of life and creating my mind relax during the rigid times of my research. I also would like to thank to my daughter Melika, who endured me when I was preparing my dissertation, for donating me in nite happiness and delight.

I would also like to gratitude Mrs. Iris Berles, for her support whenever I needed as the coordinator, Mrs. Cornelia Unglaub for her useful information as the secretary of Gradua- tion committee.

I would like to record my appreciates

- Dr. Heinz-Josef Klimeczek Senatsverwaltung für Stadtentwicklung und Umwelt des Landes Berlin
- Dr. Sylke Sallmon Senatsverwaltung für Gesundheit und Soziales
- Dr. Sabine Hermann Senatsverwaltung für Gesundheit und Soziales
- Mrs. Heidrun Nagel Senatsverwaltung für Stadtentwicklung und Umwelt,
- Abteilung Stadt- und Freiraumplanung, Referat Stadtentwicklungsplanung
- Mrs. Gabriela Kordeck Senatsverwaltung für Stadtentwicklung und Umwelt
- Mr. Frank Gödicke Amt für Statistik Berlin-Brandenburg
- Mrs. Susanne Kramm Berliner Energieagentur GmbH
- Mr. Jörn Welsch Senatsverwaltung für Stadtentwicklung und Umwelt

For their advice and cooperation from the very early phase of this thesis as well as donating me extraordinary experiences throughout the signi cant sources which made them a backbone of this research in forming of the Model and gathering of data.

Finally, I would like to appreciate each person who was vital to the successful achievement of research, in addition stating my apology that I could not declare individually one by one.

## Table of Content

| Foreword |                                                                   |    |  |
|----------|-------------------------------------------------------------------|----|--|
| Acknow   | Acknowledgement                                                   |    |  |
| Abbrev   | Abbreviations 1                                                   |    |  |
| List of  | List of Tables                                                    |    |  |
| List of  | Figures                                                           | 19 |  |
| 1        | Introduction                                                      | 25 |  |
|          | Research background                                               | 25 |  |
| 1.2      | Problem statement                                                 | 31 |  |
| 13       | Research Outcome and Objectives                                   | 35 |  |
| 14       | Research Hynotheses                                               | 36 |  |
| 1.5      | Research method in brief                                          | 36 |  |
| 1.6      | Organization of the Dissertation                                  | 39 |  |
|          |                                                                   |    |  |
| 2        | Literature Review                                                 | 41 |  |
| 2.1      | Introduction                                                      | 41 |  |
| 2.2      | Implications of the "Sustainable Development" and its             |    |  |
|          | background in the mirror of time                                  | 41 |  |
| 2.2.1    | The implications of "Sustainable Development"                     | 42 |  |
| 2.2.2    | The Historical Background of Sustainable Development in the World | 44 |  |
| 2.2.3    | The Historical Background of Sustainable Development in the       |    |  |
|          | European Union and Germany                                        | 47 |  |
| 2.2.3.1  | Sustainable Urban Development Policy in the European Union        | 47 |  |
| 2.2.3.2  | Sustainable Urban Development Policy in Germany                   | 49 |  |
| 2.3      | Sustainable Development in Urban context                          | 56 |  |
| 2.3.1    | Initial models and approach to sustainable urban development      | 61 |  |
| 2.3.2    | Urban sprawl and growth strategies                                | 63 |  |
| 2.3.3    | Causes of Urban Growth and Urban Sprawl                           | 68 |  |
| 2.3.4    | Smart growth and sustainability                                   | 70 |  |
| 2.3.5    | Smart growth and Agenda 21                                        | 74 |  |
| 2.3.6    | Urban resilience                                                  | 76 |  |
| 2.3.7    | Urban planning and Sustainable Urban Development Matrix           | 81 |  |
| 2.3.8    | Technologies applied to urban sustainable development             | 82 |  |

## Table of Content

| 2.4     | Sustainable urban development challenges                         | 84  |
|---------|------------------------------------------------------------------|-----|
| 2.5     | International Sustainability indicator systems                   | 92  |
| 2.5.1   | Review of the current assessment methods for sustainability      |     |
|         | indicator systems around the world                               | 92  |
| 2.5.2   | Core indicators within the sustainable development indicator     |     |
|         | systems within Sustainable Development Strategy in Germany       | 115 |
| 2.5.3   | Aspects of Sustainability as conceptual multi-criteria framework |     |
|         | within the Sustainability Indicator Systems                      | 133 |
| 3       | Research method                                                  | 135 |
| 3.1     | Introduction                                                     | 135 |
| 3.2     | Research Methodology                                             | 137 |
| 3.2.1   | Research Methodology Steps                                       | 137 |
| 3.2.2   | Statistical Analysis Method                                      | 141 |
| 3.2.2.1 | Developing of sustainability indicators into a Composite Index   |     |
|         | of Sustainability                                                | 141 |
| 3.2.2.2 | T-test, ANOVA (Analysis of Variance) and Factor analysis         | 144 |
| 3.2.3   | Research proposed sustainable indicators as a comprehensive      |     |
|         | multi-criteria model                                             | 147 |
| 4       | Thesis case study (Berlin as a sprawled city)                    | 211 |
| 4.1     | Introduction                                                     | 211 |
| 4.2     | Berlin districts from the perspective of history                 | 212 |
| 4.2.1   | District of Mitte and its localities                             | 218 |
| 4.2.2   | District of Friedrichshain-Kreuzberg and its localities          | 220 |
| 4.3     | Local Agenda 21 practice in Berlin                               | 234 |
| 4.4     | Urban sprawl in Berlin after re-unification in the 90s           | 239 |
| 4.5     | Smart City Berlin                                                | 244 |
| 4.6     | Sprawl without growth                                            | 247 |
| 4.7     | Sustainable Urban Development Concept in Berlin 2030             | 254 |
| 4.7.1   | Tracing a path towards sustainable Berlin 2030                   | 254 |
| 4.7.2   | The Population development trends 1991-2030 in Berlin            | 256 |
| 5       | Results and Analysis                                             | 259 |
| 5.1     | Introduction                                                     | 259 |

| 5.2    | Research hypothesis 1                                        | 260 |
|--------|--------------------------------------------------------------|-----|
| 5.2.1  | Data analysis (ANOVA test) related to the year 2000          | 260 |
| 5.2.2  | Data analysis (ANOVA test) related to the year 2005          | 262 |
| 5.2.3  | Data analysis (ANOVA test) related to the year 2010          | 264 |
| 5.2.4  | Final decision about research hypothesis 1                   | 266 |
| 5.3    | Research hypothesis 2                                        | 268 |
| 5.3.1  | Data analysis related to the year 2000                       | 268 |
| 5.3.2  | Data analysis related to the year 2005                       | 271 |
| 5.3.3  | Data analysis related to the year 2010                       | 273 |
| 5.3.4  | Final decision about research hypothesis 2                   | 275 |
| 5.4    | Research hypothesis 3                                        | 277 |
| 5.4.1  | Data analysis (T-test: 2-tailed)                             | 277 |
| 5.4.2  | Final decision about research hypothesis 3                   | 278 |
| 5.5    | Research hypothesis 4                                        | 279 |
| 5.5.1  | Data analysis related to the year 2000                       | 280 |
| 5.5.2  | Data analysis related to the year 2005                       | 281 |
| 5.5.3  | Data analysis related to the year 2010                       | 283 |
| 5.5.4  | Final decision about research hypothesis 4                   | 285 |
| 5.6    | Research hypothesis 5                                        | 287 |
| 5.6.1  | Factor analysis based on the year 2000 dataset               | 291 |
| 5.6.2  | Factor analysis based on the year 2005 dataset               | 296 |
| 5.6.3  | Factor analysis based on the year 2010 dataset               | 300 |
| 5.6.4  | Final decision about research hypothesis 5                   | 305 |
| 6      | Summary and Conclusions                                      | 309 |
| 6.1    | Introduction                                                 | 309 |
| 6.2    | Summary and conclusions                                      | 309 |
| 6.3    | Recommendations                                              | 316 |
| 6.4    | Limitations of this research and recommendations for further |     |
|        | research                                                     | 320 |
| Apper  | ndices                                                       | 323 |
| Biblio | Bibliography                                                 |     |

## Abbreviations

## Abbreviations

| BBR:         | Bundesamt für Bauwesen und Raumordnung (Federal Office for Building<br>and Regional Planning) |
|--------------|-----------------------------------------------------------------------------------------------|
| BBSR         | Federal Institute for Research on Building, Urban Affairs and Spatial                         |
| DDOIG        | Development                                                                                   |
| BMBF:        | Federal Ministry of Education and Research                                                    |
| BMVBS:       | Federal Ministry of Transport, Building and Urban Development                                 |
| BMZ:         | German Federal Ministry for Economic Cooperation and Development                              |
| BUND:        | Bund für Umwelt und Naturschutz Deutschland                                                   |
| BUUF:        | Baltic University Urban Forum                                                                 |
| CLTM:        | Commissie Lange Termijn Milieu-Beleid                                                         |
| COPs for     | climate change: Conference of the Parties for climate change                                  |
| CSD:         | Commission on Sustainable Development                                                         |
| DED:         | German Development Service                                                                    |
| DSD:         | Division of Sustainable Development                                                           |
| EAPs:        | Environmental Action Programs                                                                 |
| ECI:         | European Commission Indicators                                                                |
| EEA:         | European Environment Agency                                                                   |
| EIA:         | Environmental Impacts Assessment                                                              |
| ESD:         | Education for Sustainable Development                                                         |
| EU-SILC:     | The EU Statistics on Income and Living Conditions                                             |
| GDP:         | Gross Domestic Product                                                                        |
| GHG:         | Green House Gases                                                                             |
| GIS:         | Geographical Information System                                                               |
| GIZ:         | Deutsche Gesellschaft für Internationale Zusammenarbeit                                       |
| GNP:         | Gross National Product                                                                        |
| GTZ:         | Gesellschaft für Technische Zusammenarbeit                                                    |
| HSE:         | Health, Safety and Environment                                                                |
| HTW:         | Hochschule für Technik and Wirtschaft                                                         |
| <b>TET</b> 4 |                                                                                               |

- IFLA: International Federation of Library Associations and Institutions
- ILO: International Labor Organization
- ISS: International Space Station
- IAEA: International Atomic Energy Agency
- ICLEI: International Council for Local Environmental Initiatives
- IISD: International Institute for Sustainable Development

| JIE:    | Journal of Industrial Ecology                                    |
|---------|------------------------------------------------------------------|
| JUMP:   | program to reduce youth unemployment                             |
| LA-21:  | Local Agenda 21                                                  |
| LCA:    | Life Cycle Assessment                                            |
| LCAI:   | Life Cycle Assessment Indicators                                 |
| LCCI:   | Life Cycle Cost Indicators                                       |
| ICT:    | Information and Communication Technologies                       |
| LDCs:   | Least Developed Countries                                        |
| LFS:    | The Labor Force Survey                                           |
| LIKI:   | Land Initiative Kernindikatoren                                  |
| MRSC:   | Municipal Research and Services Center                           |
| NABU:   | Der Naturschutzbund                                              |
| NCSE:   | National Council for Science and the Environment                 |
| PUD:    | Perceived Urban Density                                          |
| R & D:  | research and development                                         |
| REC:    | Regional Environmental Center for Central and Eastern Europe     |
| SARD:   | Sustainable Agriculture and Rural Development                    |
| SDG:    | Sustainable Development Goals                                    |
| SDGs:   | Sustainable Development Goals                                    |
| SDI:    | Sustainable Development Index                                    |
| SDS:    | Sustainable Development Strategy                                 |
| SPSS:   | Statistical Package for the Social Sciences                      |
| SUD:    | Sustainable Urban Development                                    |
| TISSUE: | Trends and indicators for monitoring the EU Thematic Strategy on |
|         | Sustainable Development of Urban Environment                     |
| TSA:    | Tourism Satellite Account                                        |
| TSD:    | Time-Space Density                                               |
| UDD:    | Urban Demographic Density                                        |
| UDIA:   | Urban Development Institute of Australia                         |
| UHC:    | Universal Health Coverage                                        |
| ULD:    | Urban Land-use Density                                           |
| UMD:    | Urban Mass Density                                               |
| UNCED:  | UN Conference on Environment and Development                     |
| UNCSD:  | The United Nations Commission on Sustainable Development         |
|         |                                                                  |

#### Abbreviations

| The United Nations Environment Program/Global Resource               |
|----------------------------------------------------------------------|
| Information Database                                                 |
| The United Nations Educational, Scientific and Cultural Organization |
| The United Nations Framework Convention on Climate Change            |
| The United Nations High Commissioner for Refugees                    |
| The United Nations Office on Drugs and Crime                         |
| United Nations World Summit on Sustainable Development               |
| Urban Resource Density                                               |
| Urban Sustainability Index                                           |
| World Commission on Environment and Development                      |
| World Health Organization                                            |
| World Trade Organization                                             |
|                                                                      |

## List of Tables

| Table 1-1                     | Drivers of urban sprawl, (EEA, 2006)                           | 27  |
|-------------------------------|----------------------------------------------------------------|-----|
| Table 2-1                     | Six policy action plans of National Urban Development of       |     |
|                               | Germany, (BMVBS / BBSR, 2009)                                  | 54  |
| Table 2-2                     | Causes of urban growth, which may result in compact and/or     |     |
|                               | sprawled growth, (Bhatta, 2010)                                | 69  |
| Table 2-3                     | Sustainable Urban Development (SUD) Matrix, (UDIA, 2013)       | 82  |
| Table 2-4                     | Commission on Sustainable Development (CSD) Indicators of      |     |
|                               | Sustainable Development.(UNDESA, 2007)                         | 94  |
| Table 2-5                     | BUUF sustainability indicator project. (BUUF, 2005)            | 96  |
| Table 2-6                     | Eurostat sustainable development indicators (EU-SDI)           |     |
|                               | (Olsson et al., 2004)                                          | 98  |
| Table 2-7                     | Trends and Indicators for Monitoring the EU Thematic Strategy  |     |
|                               | on Sustainable Development of Urban Environment (TISSUE).      |     |
|                               | (Hakkinen, 2007)                                               | 100 |
| Table 2-8                     | sustainable urban development indicators cases study:          |     |
|                               | Târgu Ocna town - Romania. (Banica, 2010)                      | 103 |
| Table 2-9                     | Sustainable Development Indicators in Germany.                 |     |
|                               | (Federal Statistical Office, 2012)                             | 104 |
| Table 2-10                    | Proportion of indicators within each sustainability component. |     |
|                               | (Hai et al., 2009)                                             | 107 |
| Table 2-11                    | Existing sustainable urban development indicators Database     |     |
|                               | for the United States, (Lynch, et al., 2011)                   | 108 |
| Table 2-12                    | Developing urban sustainable Indicators for managing Mega      |     |
|                               | Cities, (Kötter& Friesecke, 2010)                              | 111 |
| Table 2-13                    | The urban sustainability index: A new tool for measuring       |     |
| <b>T</b> . L.L. <b>D</b> . 14 | China's cities, (McKinsey & Company, 2011)                     | 112 |
| Table 2-14                    | Sustainable development indicators, Goals and status in        |     |
| T-61- 2 15                    | Germany, (Federal Statistical Office, 2012)                    | 117 |
| Table 2-15                    | Sustainable development indicators, Goals and status in        | 120 |
|                               | Germany, (Federal Statistical Office, 2012)                    | 120 |
| Table 2-16                    | Cormany (Foderal Statistical Office, 2012)                     | 174 |
| Table 2 17                    | Sustainable development indicators. Coals and status in        | 124 |
|                               | Cormany (Endoral Statistical Office, 2012)                     | 120 |
|                               | Germany, (reactal Statistical Office, 2012)                    | 120 |

15

## List of Tables

| Table 2-18 | Sustainable development indicators, Goals and status in            |     |
|------------|--------------------------------------------------------------------|-----|
|            | Germany, (Federal Statistical Office, 2012)                        | 131 |
| Table 2-19 | Comparison of Environmental Indicators and Sustainability          |     |
|            | Indicators. Abolina (2005)                                         | 133 |
| Table 3-1  | Data collection methods, techniques and tools                      | 138 |
| Table 3-2  | Sustainability Index - Indicators and Variables                    | 150 |
| Table 3-3  | Proposed Sustainable Development Goals with social                 |     |
|            | protection – Related targets (United Nations, 2012)                | 180 |
| Table 5-1  | Composite sustainability index scores for all Berlin districts,    |     |
|            | 2000-2010                                                          | 259 |
| Table 5-2  | Important descriptive statistics for sustainability analysis based |     |
|            | on Population density (2000)                                       | 260 |
| Table 5-3  | Supplementary descriptive statistics for sustainability            |     |
|            | analysis (2000)                                                    | 261 |
| Table 5-4  | test for sustainability analysis based on Population               |     |
|            | density (2000)                                                     | 261 |
| Table 5-5  | All multiple comparisons: Tukey HSD, Scheffé,                      |     |
|            | Bonferroni & Holm. (2000)                                          | 262 |
| Table 5-6  | Important descriptive statistics for sustainability analysis based |     |
|            | on Population density (2005)                                       | 262 |
| Table 5-7  | Supplementary descriptive statistics for sustainability            |     |
|            | analysis (2005)                                                    | 263 |
| Table 5-8  | ANOVA test for sustainability analysis based on Population         | 262 |
|            | density (2005)                                                     | 263 |
| Table 5-9  | All multiple comparisons: Tukey HSD, Scheffe,                      | 264 |
| Table E 10 | BOMERTOM & HOIM. (2005)                                            | 264 |
| Table 5-10 | has a day and the statistics for sustainability analysis           | 261 |
| Table 5-11 | Supplementary descriptive statistics for sustainability            | 204 |
| Table 5-11 | analysis (2010)                                                    | 265 |
| Table 5-12 | ANOVA test for sustainability analysis based on Population         | 205 |
|            | density (2010)                                                     | 265 |
| Table 5-13 | All multiple comparisons: Tukey HSD, Scheffé                       | 205 |
|            | Bonferroni & Holm. (2010)                                          | 266 |
| Table 5-14 | Group Statistics for urban districts based on the amount of        | 200 |
|            | green space - 2000                                                 | 269 |
|            |                                                                    |     |

| Table 5-15 | Independent t- test (Independent Samples Test: 1) - 2000           | 270 |
|------------|--------------------------------------------------------------------|-----|
| Table 5-16 | Independent t- test (Independent Samples Test: 2) - 2000           | 270 |
| Table 5-17 | Independent t- test (Independent Samples Test: 3) - 2000           | 270 |
| Table 5-18 | Group Statistics for urban districts based on the amount of        |     |
|            | green space - 2005                                                 | 271 |
| Table 5-19 | Independent t- test (Independent Samples Test: 1) - 2005           | 272 |
| Table 5-20 | Independent t- test (Independent Samples Test: 2) - 2005           | 272 |
| Table 5-21 | Independent t- test (Independent Samples Test: 3) - 2005           | 273 |
| Table 5-22 | Group Statistics for urban districts based on the amount of        |     |
|            | green space - 2010                                                 | 273 |
| Table 5-23 | Independent t- test (Independent Samples Test: 1) - 2010           | 274 |
| Table 5-24 | Independent t- test (Independent Samples Test: 2) - 2010           | 274 |
| Table 5-25 | Independent t- test (Independent Samples Test: 3) - 2010           | 275 |
| Table 5-26 | Paired t-tests (1) for the Berlin districts during the             |     |
|            | years 2000-2010                                                    | 277 |
| Table 5-27 | Paired t-tests (2) for the Berlin districts during the             |     |
|            | years 2000-2010                                                    | 278 |
| Table 5-28 | Paired t-tests (3) for the Berlin districts during the             |     |
|            | years 2000-2010                                                    | 278 |
| Table 5-29 | Important descriptive statistics for sustainability analysis       |     |
|            | based on driving directions (2000)                                 | 280 |
| Table 5-30 | ANOVA test for sustainability analysis based on driving direction  | S   |
|            | (2000)                                                             | 281 |
| Table 5-31 | All multiple comparisons: Tukey HSD, Scheffé, Bonferroni & Holn    | n.  |
|            | (2000)                                                             | 281 |
| Table 5-32 | Important descriptive statistics for sustainability analysis based |     |
|            | on driving directions (2005)                                       | 282 |
| Table 5-33 | ANOVA test for sustainability analysis based on driving            |     |
|            | directions (2005)                                                  | 282 |
| Table 5-34 | All multiple comparisons: Tukey HSD, Scheffé,                      |     |
|            | Bonferroni & Holm. (2005)                                          | 283 |
| Table 5-35 | Important descriptive statistics for sustainability analysis       |     |
|            | based on driving directions (2010)                                 | 283 |
| Table 5-36 | ANOVA test for sustainability analysis based on driving            |     |
|            | directions (2010)                                                  | 284 |

## List of Tables

| Table 5-37 | All multiple comparisons: Tukey HSD, Scheffé,                  |     |
|------------|----------------------------------------------------------------|-----|
|            | Bonferroni & Holm. (2010)                                      | 284 |
| Table 5-38 | All variables over sustainability indicators which be involved |     |
|            | in factor analysis                                             | 289 |
| Table 5-39 | Eigenvalues associated with each factor in loading of factor   |     |
|            | rotating – 2000                                                | 292 |
| Table 5-40 | Rotated component Matrix factor loadings - 2000                | 295 |
| Table 5-41 | Eigenvalues associated with each factor in loading of factor   |     |
|            | rotating – 2005                                                | 297 |
| Table 5-42 | Rotated component Matrix factor loadings - 2005                | 300 |
| Table 5-43 | Eigenvalues associated with each factor in loading of factor   |     |
|            | rotating – 2010                                                | 301 |
| Table 5-44 | Rotated component Matrix factor loadings - 2010                | 304 |
| Table 5-45 | Significant variables affected on factors: 2000, 2005 & 2010   | 307 |

## List of Figures

| Figure 1-1  | Facets of Sustainability Supported by 19 Sustainability                          | 29 |
|-------------|----------------------------------------------------------------------------------|----|
| Figure 1-2  | Scale of 19 Sustainability Indicator Systems (Lynch et al., 2011)                | 30 |
| Figure 1-3  | Human and Environmental Outcomes of Rapid Urbanization,                          |    |
|             | (Nsiah-Gyabaah, 2003)                                                            | 33 |
| Figure 1-4  | Thesis structure and organization                                                | 39 |
| Figure 2-1  | Pillars of sustainability in sustainable development diagrams,                   |    |
| 5           | (Hsiang et al., 2012)                                                            | 42 |
| Figure 2-2  | Issues and Challenges of Sustainable development, (Luc, 1999)                    | 43 |
| Figure 2-3  | Interrelation between sustainable development and other                          |    |
|             | concepts of sustainability, (Zwart et al., 2012)                                 | 47 |
| Figure 2-4  | Environmental impacts of Urbanization (ICLEI European                            |    |
|             | Secretariat, 2012)                                                               | 58 |
| Figure 2-5  | The Circles of Sustainability, (James et al., 2015)                              | 60 |
| Figure 2-6  | Identification of urban sprawl and urban growth.                                 |    |
|             | (Alonso, 1964 103 & Milanovic, 2007 104)                                         | 65 |
| Figure 2-7  | Main Factors Responsible for Urban Sprawl in the System,<br>(Saniay kumar, 2008) | 67 |
| Figure 2-8  | The typical examples of sprawl and smart growth                                  |    |
| 5           | development (Campoli & MacLean, 2002)                                            | 71 |
| Figure 2-9  | The interaction between smart growth and sustainability,                         |    |
| -           | (New York State Department of Environmental                                      |    |
|             | Conservation, 2015)                                                              | 72 |
| Figure 2-10 | )The outcomes of Smart Growth approach in urban planning                         |    |
|             | context, (Pagett, 2007)                                                          | 74 |
| Figure 2-1  | Disaster risk reduction and resilience is a parcel of                            |    |
|             | sustainable development, (UN, 2012)                                              | 80 |
| Figure 2-12 | Challenges within three spheres of Sustainability,                               |    |
|             | (Kashem and Hafiz, 2006)                                                         | 85 |
| Figure 2-13 | 3-Horizon concept of sustainability challenges in urban                          |    |
|             | development, (Newton and Bai, 2008)                                              | 87 |
| Figure 2-14 | Isustainable urban development challenges as Sustainable                         |    |
|             | Footprints, (Sustainable Footprints, 2014)                                       | 88 |
|             |                                                                                  |    |

19

## List of Figures

| Figure 2-15<br>Figure 2-16 | Sustainability indicators Framework, (Grey and Siddall, 2011)<br>The Gross Domestic Product (GDP) in Germany. | 114 |
|----------------------------|---------------------------------------------------------------------------------------------------------------|-----|
|                            | (World Bank Group, 2015)                                                                                      | 125 |
| Figure 3-1                 | Structure of the Research Methodology approach                                                                | 136 |
| Figure 3-2                 | Research Design Overview                                                                                      | 140 |
| Figure 3-3                 | Overview of the stages in a factor analysis,                                                                  |     |
|                            | (Rietveld & Van Hout, 1993)                                                                                   | 146 |
| Figure 3-4                 | Constructing the framework of sustainable urban development                                                   |     |
|                            | indicators                                                                                                    | 148 |
| Figure 3-5                 | World population growth in urban areas, 1950-2050                                                             |     |
|                            | (UNDESA, 2014)                                                                                                | 154 |
| Figure 3-6                 | Under-five mortality for the world and development groups,                                                    |     |
|                            | 1950-2100 (UNDESA, 2013)                                                                                      | 157 |
| Figure 3-7                 | Framework for Sustainable Health and Health Care                                                              |     |
|                            | (The Conference Board of Canada, 2015)                                                                        | 159 |
| Figure 3-8                 | Migration and Sustainable Development Trends (OxAID, 2013)                                                    | 164 |
| Figure 3-9                 | Total foreign citizens and % of total Europe countries                                                        |     |
|                            | population, 2009 (Ridley, 2015)                                                                               | 166 |
| Figure 3-10                | ) Inter-related areas to improved sustainability of development                                               |     |
| -                          | in the longer term (Bargiacchi et al., 2011)                                                                  | 172 |
| Figure 3-11                | Who's poor? – Three dimensions of poverty (Alkire, 2014)                                                      | 175 |
| Figure 3-12                | 2 The Role of Tourism in promotes Sustainability (Manwa, 2014)                                                | 177 |
| Figure 3-13                | B The Sustainability Business case (Willard, 2013)                                                            | 182 |
| Figure 3-14                | Mixed-use and Transit-oriented Sustainable Development                                                        |     |
| -                          | (North Central Texas Council of Governments, 2013)                                                            | 186 |
| Figure 3-15                | A Global Land Administration Perspective, (Enemark, 2004)                                                     | 192 |
| Figure 3-16                | Earth's Water Reservoirs, (Gleick, 1993)                                                                      | 196 |
| Figure 3-17                | The Global Initiative for Resource Efficient Cities - UNEP                                                    |     |
| 5                          | (Comstock et al., 2012)                                                                                       | 198 |
| Figure 3-18                | Increasing global water stress, 2000-2025,                                                                    |     |
| 5                          | (UNEP/GRID-Arendal, 2009)                                                                                     | 201 |
| Figure 3-19                | Major primary and secondary energy sources (Nuvan, 2011)                                                      | 202 |
| Figure 3-20                | Energy consumption by sector in the urban context (U.S.                                                       |     |
| 2                          | Energy Information Administration, 2012)                                                                      | 203 |
| Figure 3-21                | The history of CO2 emissions worldwide (BP, 2014)                                                             | 205 |
| -                          |                                                                                                               |     |

| Figure 3-22 | 2 Sources of air pollution: Primary and secondary pollutants      |                   |
|-------------|-------------------------------------------------------------------|-------------------|
|             | (Scottish Environment Protection Agency, 2014)                    | 207               |
| Figure 3-2  | 3The importance of ozone in the Earth atmosphere,                 |                   |
|             | (Shapley, 2012)                                                   | 209               |
| Figure 4-1  | Berlin as the canital of Cermany                                  |                   |
| rigure 4-1  | (© Marco 2811 - Fotolia com 2015)                                 | 211               |
| Figure 4-2  | The four sectors of Berlin after splitting by the Allies          | 211               |
| riguic + 2  | (1945-1990) (Wikingdia 2014)                                      | 213               |
| Figure 4-3  | 23 former districts and localities of Berlin in 1990-2000         | 215               |
| riguic + J  | (Wikinedia 2014)                                                  | 214               |
| Figure 4-4  | Twelve districts and localities of Berlin in 2000                 | 211               |
| rigure i i  | (Wikinedia 2014)                                                  | 216               |
| Figure 4-5  | Coats of arms of twelve districts and localities of Berlin        | 2.0               |
| inguie i s  | (Wikipedia, 2014)                                                 | 217               |
| Figure 4-6  | Sustainability in Berlin districts in the "local Agenda 21"       | 217<br>218<br>219 |
|             | framework. (Wikipedia, 2014)                                      | 218               |
| Figure 4-7  | District of Mitte and its localities, (Wikipedia, 2014)           | 219               |
| Figure 4-8  | District of Friedrichshain-Kreuzberg and its localities,          |                   |
| 5           | (Wikipedia, 2014)                                                 | 220               |
| Figure 4-9  | District of Pankow and its localities, (Wikipedia, 2014)          | 222               |
| Figure 4-10 | District of Charlottenburg-Wilmersdorf and its localities,        |                   |
|             | (Wikipedia, 2014)                                                 | 224               |
| Figure 4-1  | 1 District of Spanda and its localities, (Wikipedia, 2014)        | 225               |
| Figure 4-12 | 2 District of Steglitz-Zehlendorf and its localities,             |                   |
|             | (Wikipedia, 2014)                                                 | 226               |
| Figure 4-1  | 3 District of Tempelhof-Schöneberg and its localities,            |                   |
|             | (Wikipedia, 2014)                                                 | 227               |
| Figure 4-14 | 4 District of Neukölln and its localities, (Wikipedia, 2014)      | 228               |
| Figure 4-1  | 5 District of Treptow-Köpenick and its localities,                |                   |
|             | (Wikipedia, 2014)                                                 | 229               |
| Figure 4-1  | 6 District of Marzahn-Hellersdorf and its localities,             |                   |
|             | (Wikipedia, 2014)                                                 | 229<br>230<br>232 |
| Figure 4-1  | 7 District of Lichtenberg and its localities, (Wikipedia, 2014)   | 232               |
| Figure 4-1  | 8 District of Reinickendorf and its localities, (Wikipedia, 2014) | 233               |

## List of Figures

| Figure 4-19 | groups of players in implementation of the Berlin Local         |     |
|-------------|-----------------------------------------------------------------|-----|
|             | Agenda 21, (Senate Department for Urban Development             |     |
|             | and the Environment, 2014)                                      | 234 |
| Figure 4-20 | ) The former division between East and West Berlin at night,    |     |
| -           | (Kuipers, 2012)                                                 | 243 |
| Figure 4-21 | Settlement patterns by county (Landkreis) type. A.              |     |
|             | (Schmidt, 2011)                                                 | 249 |
| Figure 4-22 | Change in population (1995–2005) and urbanized area             |     |
|             | (1996–2004) (Schmidt, 2011459 & BBR, 2007                       | 250 |
| Figure 4-23 | 3 1990-2014 Population Register, 2015 Forecast Results in 3     |     |
|             | varieties of Berlin, (Senate Department for Urban Development   |     |
|             | and the Environment, 2016)                                      | 251 |
| Figure 4-24 | Sprawl index score by landkreis. Index calculated as change in  |     |
|             | population growth, 1995-2005 divided by the change in           |     |
|             | urbanization, 1996-2004 (Schmidt, 2011)                         | 253 |
| Figure 4-25 | The structure of Berlin sustainable development strategy 2030,  |     |
|             | (Senate Department for Urban Development and Environment,       |     |
|             | 2013)                                                           | 255 |
| Figure 4-26 | The Population percentage trends 2015-2030 in districts of      |     |
|             | Berlin, (Senate Department for Urban Development and the        |     |
|             | Environment, 2016)                                              | 257 |
|             |                                                                 |     |
| Figure 5-1  | Comparison Chart of Sustainability to population density in     |     |
|             | Berlin districts (2000 – 2010)                                  | 267 |
| Figure 5-2  | Comparison Chart of Sustainability to green area in Berlin      |     |
|             | districts (2000 – 2010)                                         | 276 |
| Figure 5-3  | Mean Sustainability scores changing trends in Berlin districts  |     |
|             | (2000 - 2010)                                                   | 279 |
| Figure 5-4  | Comparison Chart of Sustainability to Geographical divisions in |     |
|             | Berlin districts (2000 – 2010)                                  | 286 |
| Figure 5-5  | Scree plot includes key factors and percentages of Eigenvalues  |     |
| (2000)      |                                                                 | 294 |
| Figure 5-6  | Scree plot includes key factors and percentages of Eigenvalues  |     |
|             | (2005)                                                          | 299 |
| Figure 5-7  | Scree plot includes key factors and percentages of Eigenvalues  |     |
|             | (2010)                                                          | 303 |

# Introduction

## 1.1 Research background

"Sustainable development" perception was considerably extended after 1987. it has been developed by a global political process that has attempted to integrate existing global concerns includes; the requirement for economic development to fight social and personal poverty in first, the requirement for environmental preservation and protection secondly and finally the requirement for "social justice and cultural diversity" to enhance standards of the local communities in solving these problems. The main elements of sustainable development are "economic development, environmental protection, and social equity" as the concept of three mutually fortifying pillars of sustainable development (WCED, 1987).<sup>1</sup>

According to United Nations (2014)<sup>2</sup>, Department of Economic and Social Affairs, Population Division, nowadays more than 50 percent of the population on the earth living in cities and it is expected to meet this rate to 66 percent by 2025. Forecasts display that urbanization merged with the global growth of the world's population could increase billions of people to urban populations by 2050 and addressing the issue of urban development with a sustainability approach goes to be a basic principle in development. Sustainability and using of indicators of sustainable development are the significant criteria that decision makers and designers have focused on them in urban development during the past decades until now. It is important to define some indicators of sustainable development that by applying them we will enable to monitor and evaluate policies, aims, goals, objectives, plans and programs. Prioritizing objectives and programs, allocating resources like human and financial, interaction between interested parties and measuring performance are the key areas, which will be quantified by indicators of sustainable development (OECD, 1997).<sup>3</sup>

One of the most outstanding characteristics of sustainable development is the addressing sustainability indicators and its role in achieving effective and practical results in the field of sustainable development, which were specifically introduced at the conference of Earth in 1992. In addition, improving and growing trend of these indicators of sustainable development has

<sup>&</sup>lt;sup>1</sup> World Commission on Environment and Development (WCED), (1987) Our common future. New York: Oxford University Press.

<sup>&</sup>lt;sup>2</sup> United Nations (2014) Department of Economic and Social Affairs, Population Division, World Urbanization Prospects: The 2014 Revision

<sup>&</sup>lt;sup>3</sup> Organization for Economic Cooperation and Development (OECD), (1997) Better understanding our cities: The role of urban indicators, Paris

#### 1 Einleitung

been emphasized at the international, national, and local levels. International associations such as the United Nations (2001)<sup>4</sup>, OECD (2000)<sup>5</sup> and WCED (1987)<sup>6</sup> acted a significant duty in developing indicators that assess development at the national level.

Paek (2006)<sup>7</sup> argued that at the local level, numerous towns engage initiatives in developing sustainability indicators as part of actions to fulfill urban sustainability especially as a sprawled city. For instance, "the Sustainable Seattle Indicators Project (Sustainable Seattle, 1998)<sup>8</sup>, the Central Texas Sustainability Indictors Project (Central Texas Sustainability Indictors Project, 2004)<sup>9</sup>; the Santa Monica Sustainable City Plan (City of Santa Monica, 2005)<sup>10</sup>; the Portland Sustainability Initiative (City of Portland, 2000)<sup>11</sup>; the San Francisco Sustainability Plan (Sustainable City, 1996)".<sup>12</sup>

Therefore, data gathering and policy makers and designers should lead data mining process properly plays a highlighted for accessing to sustainable development criteria.

#### The drivers of urban sprawl

To find a suitable solution for urban sprawl challenges, it is essential to understand the forces driving urban sprawl within sustainable urban planning strategies. According to the current research information in the sprawling cities development, the main reason of sprawling and expanding of cities is residential expansion along with wide range of development in economic projects and enhancing transportation systems. Particularly when we are going to the European urban studies, it is essentially a significance result of growing population and public and private transport demand in European countries and cities and somewhat

<sup>&</sup>lt;sup>4</sup> United Nations (2001) Indicators of sustainable development: Guidelines and methodologies New York: United Nations, Division for Sustainable Development

<sup>&</sup>lt;sup>5</sup> Organization for Economic Cooperation and Development (OECD), (2000) Towards sustainable development: Indicators to measure progress. Proceedings of the OECD Rome Conference, Paris: OECD

<sup>&</sup>lt;sup>6</sup> World Commission on Environment and Development (WCED), (1987) Our common future. New York: Oxford University Press.

<sup>&</sup>lt;sup>7</sup> Paek, S. (2006) Urban Growth Pattern and Sustainable Development, Texas A&M University

<sup>&</sup>lt;sup>8</sup> Sustainable Seattle (1998) Indicators of sustainable community, Seattle: Sustainable Seattle.

<sup>&</sup>lt;sup>9</sup> Central Texas Sustainability Indicators Project (2004) The central Texas sustainability indicators project: Annual report 2004. Austin, TX: Central Texas Sustainability Indicators Project

<sup>&</sup>lt;sup>10</sup> City of Santa Monica (2005) Sustainable city plan

<sup>&</sup>lt;sup>11</sup> City of Portland (2000) Sustainability benchmarks: Portland & selected U.S. cities

<sup>&</sup>lt;sup>12</sup> Sustainable City (1996) The sustainability plan for the City of San Francisco. [online] Available from: http:// www.sustainable-city.org

high growths in the worth of developed areas (EEA, 2006)<sup>13</sup>. The desirability of dwelling in the downtown of cities has decreased; on the other hand the quality of life in 'rural areas' containing city borders, near to natural environment, has expanded. These features show planning issues for small municipality's effort to sustain their residents and support small and medium-sized businesses (Barredo et al., 2003).<sup>14</sup> According to the European Environment Agency EEA (2006), the key drivers of urban sprawl are categorized in the Table 1.1.



|   | Main categories            | Sub-categories                                                                                                                                                                              |
|---|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Macro-economic<br>aspects  | <ul> <li>Economic progress</li> <li>Globalization</li> <li>European countries union</li> </ul>                                                                                              |
| 2 | Micro-economic<br>aspects  | <ul> <li>Increasing living values</li> <li>Worth of terrestrial places</li> <li>Accessibility of low-priced natural environment</li> <li>Competition between cities</li> </ul>              |
| 3 | Demographic aspects        | <ul> <li>Increasing Inhabitants</li> <li>Rising in household establishment</li> </ul>                                                                                                       |
| 4 | Housing favorites          | <ul> <li>More land per each human</li> <li>Housing favorites</li> </ul>                                                                                                                     |
| 5 | Inner city issues          | <ul> <li>Decreasing air quality</li> <li>Noise pollution</li> <li>Small apartments</li> <li>Hazardous environments</li> <li>Social issues</li> <li>Lack of green belts and parks</li> </ul> |
| 6 | Transportation<br>networks | <ul> <li>Private car ownership</li> <li>Accessibility of streets and highways</li> <li>Low cost of fuel</li> <li>Improper public transport</li> </ul>                                       |
| 7 | Governing contexts         | <ul> <li>Weak land practice planning</li> <li>Improper implementation of current plans</li> <li>Shortage of horizontal and vertical coordination<br/>and collaboration</li> </ul>           |

<sup>&</sup>lt;sup>13</sup> European Environment Agency (EEA), (2006) Urban sprawl in Europe, The ignored challenge, ISSN 1725-9177

<sup>&</sup>lt;sup>14</sup> Barredo, J. I., Kasanko, M., McCormick, N., and Lavalle, C. (2003) Modeling dynamic spatial processes: simulation of urban future scenarios through cellular automata Landscape and Urban Planning, 64(3), 145–160

<sup>&</sup>lt;sup>15</sup> European Environment Agency (EEA), (2006) Urban sprawl in Europe, The ignored challenge, ISSN 1725-9177

#### 1 Einleitung

The future development patterns could be estimated in based on the existing trend of past decades' statistics data. The estimated inhabitant's growth in European urban areas at the past decades is equivalent with the growth of population in the future. "Therefore, the land use scenario for the year 2020 follows the main trends from 1988 to 2000 with slightly smaller growth expectations by using the MOLAND model" (Barredo et al., 2003).<sup>16</sup>

On the other hand, a number of research literature sources about the former socialist countries of central and Eastern Europe presents groups of compact cities form and high densities in this area principally expose the supportive centralized planning systems and extensive dependence on public transport. According to the Ott (2001)<sup>17</sup>, Nuissl and Rink (2005)<sup>18</sup> as cited in EEA (2006)<sup>19</sup>; nowadays, these European cities like Berlin in Germany are encountering the same risks of fast urban sprawl as "the land market is liberated, housing preferences evolve, improving economic prospects create new pressures for low density urban expansion, and less restrictive planning controls prevail".

#### Existing sustainability indicator systems

According to the existing literature review, so many sustainability indicator systems worldwide measure SD or sustainability. Figure 1.1 illustrates models with different levels (e.g. national, regional, city & building level) that focus on different aspects of sustainability. In general, there is a wide range of sustainability definitions and obviously, it is an essential method to realize the valuable concepts that each organization defines it. "The most commonly cited interpretation, has been noted by 13 of the groups is that of the Brundtland Commission, which emphasizes intergenerational equity" (WCED, 1987).<sup>20</sup> (Figure 1.2)

<sup>&</sup>lt;sup>16</sup> Barredo, J. I., Kasanko, M., McCormick, N., and Lavalle, C. (2003) Modeling dynamic spatial processes: simulation of urban future scenarios through cellular automata Landscape and Urban Planning, 64(3), 145–160

<sup>&</sup>lt;sup>17</sup> Ott, T. (2001) From concentration to de-concentration and migration patterns in the post-socialist city. Cities, 18(6), 403–412.

<sup>&</sup>lt;sup>18</sup> Nuissl, H. and Rink, D. (2005) The 'production' of urban sprawl in eastern Germany as a phenomenon of post-socialist transformation. Cities, 22(2), 123–134.

<sup>&</sup>lt;sup>19</sup> European Environment Agency (EEA), (2006) Urban sprawl in Europe, The ignored challenge, ISSN 1725-9177

<sup>&</sup>lt;sup>20</sup> World Commission on Environment and Development (WCED), (1987) Our common future. New York: Oxford University Press.

Figure 1-1 Facets of Sustainability Supported by 19 Sustainability Indicator Systems (Lynch et al., 2011)<sup>21</sup>



In 1987, the Brundtland Commission of the United Nations presented the comprehensive approach of sustainable development: "sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs" (WCED, 1987).<sup>22</sup>

<sup>&</sup>lt;sup>21</sup> Lynch A. J., Andreason S., Eisenman T., Robinson J., Steif K. and Birch E. L. (2011) Sustainable urban development indicators for the United States, Report to the Office of International and Philanthropic Innovation, Office of Policy Development and Research, U.S. Department of Housing and Urban Development.

<sup>&</sup>lt;sup>22</sup> World Commission on Environment and Development (WCED), (1987) Our common future. New York: Oxford University Press.



Figure 1-2 Scale of 19 Sustainability Indicator Systems (Lynch et al., 2011)<sup>23</sup>

#### Berlin as the research case study

In Berlin as the capital city of Germany has more than one main urban center. In Berlin, also several boroughs or districts are composed of several localities that named as Kieze in German. In the first division of urban areas in Germany, Berlin had 23 boroughs. Since 2001, these urban districts have officially been merged together and decreased from 23 to 12 for improving organizational urban and regional proficiency as follows;

- Mitte
- Friedrichshain-Kreuzberg
- Pankow

1 Einleitung

- Charlottenburg-Wilmersdorf
- Spandau
- Steglitz-Zehlendorf

<sup>&</sup>lt;sup>23</sup> Lynch A. J., Andreason S., Eisenman T., Robinson J., Steif K. and Birch E. L. (2011) Sustainable urban development indicators for the United States, Report to the Office of International and Philanthropic Innovation, Office of Policy Development and Research, U.S. Department of Housing and Urban Development.

- Tempelhof-Scho neberg
- Neuko lln
- Treptow-Ko penick
- Marzahn-Hellersdorf
- Lichtenberg
- Reinickendorf

The time span of this research covers the period 2000-2010. The indicator data has been gathered for 12 districts of Berlin for each of the years: 2000, 2005, and 2010.

#### 1.2 Problem statement

According to the existing reports and research outcomes, development in so many cities specifically "sprawled cities" in countries around the world has been influenced by global changes. Corporate governance, the information economy, the challenges of an ageing population, public transportation and strategic communication, modernizations as social and economic indicators, is the main area that needs to be developed sustainable. Therefore, sustainable development concept within these areas has been a significant indicator to design a suitable pattern to achieve sustainability in sprawled cities. (Deakin, 2003<sup>24</sup>; Laffel, 2006<sup>25</sup>; OECD, 2008<sup>26</sup>; Gurran, 2011<sup>27</sup>; Servaes, 2013<sup>28</sup>) Migration and economic development

<sup>&</sup>lt;sup>24</sup> Deakin, M. (2003) Developing Sustainable Communities: Impacts of a Sporting Event on a Provincial City: The Case of New Plymouth

<sup>&</sup>lt;sup>25</sup> Laffel, N. (2006) Promoting Public Transportation for Sustainable Development, New Jersey: Princeton University.

<sup>&</sup>lt;sup>26</sup> Organization for Economic Cooperation and Development (OECD), (2008) Competitive Cities and Climate Change

<sup>&</sup>lt;sup>27</sup> Gurran, N. (2011) Australian Urban land use planning: Principles, systems and practice. (2nd ed.) Sydney University Press

<sup>&</sup>lt;sup>28</sup> Servaes, J. (2013) Sustainable Development and Green Communication African and Asian Perspectives, London/ New York: Palgrave / MacMillan

#### 1 Einleitung

(Paper, 2013)<sup>29</sup>; energy and resource use (Mensah and Castro, 2004<sup>30</sup>; IAEA, 2005<sup>31</sup>; Lion and Moavenzadeh, 2003<sup>32</sup>); poverty (UNEP, 2011a)<sup>33</sup> and globalization of economic activities (UNEP, 2011b<sup>34</sup>; Zollinger, 2007<sup>35</sup>) also are the other areas that need to study deeper to modify sustainability pattern. Based on the existing information, there are many of the cities in developed and developing countries that have been faced to main challenges of sustainable development particularly about environmental and human negative impacts (Sorensen et al., 2004).<sup>36</sup>

According to the Kahn (2005)<sup>37</sup> as cited by Paek (2006)<sup>38</sup>, the pattern for the urban development in sprawl cities, has been described by its speed, magnitude and intensity, along with postures both opportunities and threats for sustainable development. To realize sustainable development of sprawl cities, it is essential to study the interfaces of economic, environmental and social concerns occurring from urban development.

- <sup>30</sup> Mensah, A.M., and Castro, L.C. (2004) Sustainable Resource Use and Sustainable Development a Contradiction, Retrieved January 10, 2013 from Center for Development [online] Available from: www.zef.de/fileadmin/downloads/forum/.../2004\_3b\_Mensah\_Castro.pdf
- <sup>31</sup> International Atomic Energy Agency (IAEA), (2005) Energy indicators for sustainable development: Country Studies on Brazil, Cuba, Lithuania Mexico, Russian Federation, Slovakia and Thailand, United nations department of economic and social affairs.
- <sup>32</sup> Lion, S. and Moavenzadeh, F. (2003) Sustainable Development and Energy Consumption in Urban Transportation: A Need for Comprehensive Solutions, Proceedings of International Workshop on Policy Integration Towards Sustainable Urban Energy Use for Cities in Asia, 4-5 February 2003 (East West Center, Honolulu, Hawaii).
- <sup>33</sup> United Nations Environment Program (UNEP), (2011a) Keeping Track of Our Changing Environment: From Rio to Rio+20 (1992-2012) United Nations Environment Program, Nairobi. Published October 2011, ISBN: 978-92-807-3190-3.
- <sup>34</sup> United Nations Environment Program (UNEP), (2011b) Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication, www.unep.org/greeneconomy ISBN: 978-92-807-3143-9 Layout by UNEP/GRID-Arendal
- <sup>35</sup> Zollinger, U. (2007) The Effects of Globalization on Sustainable Development and the Challenges to Global Governance, Paper on behalf of the Swiss Agency for Development and Cooperation (SDC) on the occasion of the Certificate Course "Sustainable Development" at the University of Berne.
- <sup>36</sup> Sorensen, A., Marcotullio, P. J., and Grant, J. (2004) Towards sustainable cities: East Asian, North American and European perspectives on managing urban regions (pp.3-23), Burlington, VT: Ashgate.
- <sup>37</sup> Kahn, M. (2005) Green cities: Environmental challenges posed by urban growth. Unpublished paper, Tufts University. Retrieved November 20, 2005, from http:// www.owlnet.rice.edu/~econ461/papers/greencities.pdf

<sup>38</sup> Paek, S. (2006) Urban Growth Pattern and Sustainable Development, Texas A&M University

<sup>&</sup>lt;sup>29</sup> Paper, D. (2013) Migration and Sustainable Economic Development, Deutsche Gesellschaft fu r Internationale Zusammenarbeit (GIZ) GmbH

Urban growth affects on various aspects of cities, including natural environment use, transportation networks, environment, economic growth, and housing. Consequently, in order to better understanding the influences of urban development, a multi-criteria model is needed in that urban development has both positive and negative effects for sprawled cities in different areas.

The existing literature review presents the various models of urban development are able to create different impacts on sustainability. Obviously, there is rapid growth of cities in developed and developing countries that need to define proper models on sustainability to mitigate negative impacts of rapid urbanization as shown in Figure 1.3.



One of the major flaws of the existing models for evaluation of urban development from the perspective of sustainability is the lack of coverage of all parameters affecting the sus-

Human and Environmental (Nsiah-Gyabaah, 2003) 39

<sup>&</sup>lt;sup>39</sup> Nsiah-Gyabaah K. (2003) Urbanization, environmental degradation and food security in Africa, the global environmental change research community, Montreal, Canada, 16-18 OCTOBER 2003